Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Bone Miner Metab ; 41(2): 268-277, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2283322

ABSTRACT

INTRODUCTION: Zoledronic acid (5 mg; ZOL), a once-yearly bisphosphonate, reduces osteoporotic fractures and increases bone mineral density (BMD). This 3-year post-marketing surveillance examined its real-world safety and effectiveness. MATERIALS AND METHODS: This prospective, observational study included patients who started ZOL for osteoporosis. Data were assessed at baseline, 12, 24, and 36 months for safety and effectiveness. Treatment persistence, potentially related factors, and persistence before and after the COVID-19 pandemic started were also investigated. RESULTS: The safety analysis and effectiveness analysis sets included 1406 and 1387 patients, respectively, with mean age of 76.5 years. Adverse reactions (ARs) occurred in 19.35% of patients, with an acute-phase reaction in 10.31, 1.01, and 0.55% after the first, second, and third ZOL infusions. Renal function-related ARs, hypocalcaemia, jaw osteonecrosis, and atypical femoral fracture occurred in 1.71, 0.43, 0.43, and 0.07% of patients, respectively. Three-year cumulative fracture incidences were 4.44% for vertebral, 5.64% for non-vertebral, and 9.56% for clinical fractures. BMD increased by 6.79, 3.14, and 1.78% at the lumbar spine, femoral neck, and total hip, respectively, after 3-year treatment. Bone turnover markers remained within reference ranges. Treatment persistence was 70.34% over 2 years and 51.71% over 3 years. Male, age ≥ 75 years, no previous medicines for osteoporosis, no concomitant medicines for osteoporosis, and inpatient at the first infusion were related to discontinuation. There was no significant difference in the persistence rate between before and after the COVID-19 pandemic (74.7% vs. 69.9%; p = 0.141). CONCLUSION: This 3-year post-marketing surveillance confirmed the real-world safety and effectiveness of ZOL.


Subject(s)
Bone Density Conservation Agents , Osteoporosis , Product Surveillance, Postmarketing , Aged , Humans , Male , Bone Density , Bone Density Conservation Agents/adverse effects , COVID-19 , Diphosphonates/adverse effects , East Asian People , Imidazoles/therapeutic use , Osteoporosis/epidemiology , Pandemics , Prospective Studies , Zoledronic Acid/adverse effects
3.
J Med Virol ; 93(12): 6750-6759, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544329

ABSTRACT

Only a few treatments are approved for coronavirus disease-2019 (COVID-19) infections, with continuous debate about their clinical impact. Repurposing antiviral treatments might prove the fastest way to identify effective therapy. This trial aimed to evaluate the efficacy and safety of sofosbuvir (SOF) plus daclatasvir (DCV) or ravidasvir (RDV) added to standard care (SOC) for patients with moderate and severe COVID-19 infection. Multicentre parallel randomized controlled open-label trial. One hundred and twenty eligible patients with moderate and severe COVID-19 infection were randomized to one of the study arms. Ten days of treatment with SOF plus DCV or RDV in addition to the standard of care compared to SOC. Follow up in 7 days. Sum of the counted symptoms at 7 and 10 days, mean change in oxygen saturation level, viral negativity, and rate of intensive care unit (ICU) admission. Compared to SOC, the SOF-DCV group experienced a significantly lower sum of the counted symptoms (fever, headache, generalized aches, or respiratory distress) combined with no evidence of deterioration (ICU admission and mechanical ventilation) on Days 7 and 10 of treatment. Oxygen saturation also significantly improved among the SOF-DCV group compared to SOC starting from Day 4. The study also showed positive trends regarding the efficacy of SOF-DCV with a lower incidence of mortality. On the other hand, adding SOF-RDV to SOC did not show significant improvements in endpoints. The results support the efficacy and safety of SOF-DCV as an add-on to SOC for the treatment of moderate to severe COVID-19 infections.


Subject(s)
Antiviral Agents/therapeutic use , Benzimidazoles/therapeutic use , COVID-19 Drug Treatment , Carbamates/therapeutic use , Imidazoles/therapeutic use , Pyrrolidines/therapeutic use , Sofosbuvir/therapeutic use , Valine/analogs & derivatives , Adult , Drug Therapy, Combination/methods , Female , Genotype , Humans , Intensive Care Units , Male , Middle Aged , Prospective Studies , Treatment Outcome , Valine/therapeutic use
4.
Cell Res ; 31(12): 1230-1243, 2021 12.
Article in English | MEDLINE | ID: covidwho-1475291

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the ongoing global pandemic that poses substantial challenges to public health worldwide. A subset of COVID-19 patients experience systemic inflammatory response, known as cytokine storm, which may lead to death. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important mediator of inflammation and cell death. Here, we examined the interaction of RIPK1-mediated innate immunity with SARS-CoV-2 infection. We found evidence of RIPK1 activation in human COVID-19 lung pathological samples, and cultured human lung organoids and ACE2 transgenic mice infected by SARS-CoV-2. Inhibition of RIPK1 using multiple small-molecule inhibitors reduced the viral load of SARS-CoV-2 in human lung organoids. Furthermore, therapeutic dosing of the RIPK1 inhibitor Nec-1s reduced mortality and lung viral load, and blocked the CNS manifestation of SARS-CoV-2 in ACE2 transgenic mice. Mechanistically, we found that the RNA-dependent RNA polymerase of SARS-CoV-2, NSP12, a highly conserved central component of coronaviral replication and transcription machinery, promoted the activation of RIPK1. Furthermore, NSP12 323L variant, encoded by the SARS-CoV-2 C14408T variant first detected in Lombardy, Italy, that carries a Pro323Leu amino acid substitution in NSP12, showed increased ability to activate RIPK1. Inhibition of RIPK1 downregulated the transcriptional induction of proinflammatory cytokines and host factors including ACE2 and EGFR that promote viral entry into cells. Our results suggest that SARS-CoV-2 may have an unexpected and unusual ability to hijack the RIPK1-mediated host defense response to promote its own propagation and that inhibition of RIPK1 may provide a therapeutic option for the treatment of COVID-19.


Subject(s)
COVID-19/pathology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/mortality , COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Cytokines/genetics , Cytokines/metabolism , Down-Regulation/drug effects , ErbB Receptors/metabolism , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Mutation , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Survival Rate , Transcriptome/drug effects , Viral Load/drug effects , Virus Internalization , COVID-19 Drug Treatment
5.
Expert Rev Anti Infect Ther ; 20(2): 291-295, 2022 02.
Article in English | MEDLINE | ID: covidwho-1294626

ABSTRACT

BACKGROUND: Limited experimental and clinical evidence suggests a potential role for sofosbuvir/daclatasvir in treating COVID19. We aim to evaluate the efficacy of generic sofosbuvir/daclatasvir in treating COVID-19 patients with pneumonia. RESEARCH DESIGN AND METHODS: This multicenter prospective study involved 174 patients with COVID-19. Patients were randomized into two groups. Group A (96 patients) received sofosbuvir (400 mg)/daclatasvir (60 mg) for 14 days in combination with conventional therapy. Group B (78 patients) received conventional therapy alone. Clinical, laboratory, and radiological data were collected at baseline, after 7, 14, and 28 days of therapy. Primary endpoint was rate of clinical/virological cure. RESULTS: A lower mortality rate was observed in group (A) (14% vs 21%, P = 0.07). After 1 month of therapy, no differences were found in rates of ICU admission, oxygen therapy, or ventilation. Additionally, a statistically significant shorter duration of hospital stay (9% vs 12%, P < 0.01) and a faster achievement of PCR negativity at day 14 (84% versus 47%, P < 0.01) were noticed in group (A). CONCLUSION: Adding sofosbuvir/daclatasvir to conventional therapy of COVID-19 is promising. Their use is associated with shorter hospital stay, faster PCR negativity and may be reduced mortality.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Carbamates , Imidazoles , Pyrrolidines , Sofosbuvir , Valine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/mortality , Carbamates/therapeutic use , Drug Therapy, Combination , Egypt/epidemiology , Humans , Imidazoles/therapeutic use , Length of Stay , Prospective Studies , Pyrrolidines/therapeutic use , SARS-CoV-2 , Sofosbuvir/therapeutic use , Treatment Outcome , Valine/therapeutic use
6.
J Microbiol Immunol Infect ; 54(5): 767-775, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1284232

ABSTRACT

Despite aggressive efforts on containment measures for the coronavirus disease 2019 (COVID-19) pandemic around the world, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously spreading. Therefore, there is an urgent need for an effective antiviral agent. To date, considerable research has been conducted to develop different approaches to COVID-19 therapy. In addition to early observational studies, which could be limited by study design, small sample size, non-randomized design, or different timings of treatment, an increasing number of randomized controlled trials (RCTs) investigating the clinical efficacy and safety of antiviral agents are being carried out. This study reviews the updated findings of RCTs regarding the clinical efficacy of eight antiviral agents against COVID-19, including remdesivir, lopinavir/ritonavir, favipiravir, sofosbuvir/daclatasvir, sofosbuvir/ledipasvir, baloxavir, umifenovir, darunavir/cobicistat, and their combinations. Treatment with remdesivir could accelerate clinical improvement; however, it lacked additional survival benefits. Moreover, 5-day regimen of remdesivir might show adequate effectiveness in patients with mild to moderate COVID-19. Favipiravir was only marginally effective regarding clinical improvement and virological assessment based on the results of small RCTs. The present evidence suggests that sofosbuvir/daclatasvir may improve survival and clinical outcomes in patients with COVID-19. However, the sample sizes for analysis were relatively small, and all studies were exclusively conducted in Iran. Further larger RCTs in other countries are warranted to support these findings. In contrast, the present findings of limited RCTs did not indicate the use of lopinavir/ritonavir, sofosbuvir/ledipasvir, baloxavir, umifenovir, and darunavir/cobicistat in the treatment of patients hospitalized for COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Amides/therapeutic use , Carbamates/therapeutic use , Cobicistat/therapeutic use , Darunavir/therapeutic use , Dibenzothiepins/therapeutic use , Drug Combinations , Drug Therapy, Combination , Humans , Imidazoles/therapeutic use , Indoles/therapeutic use , Iran , Lopinavir/therapeutic use , Morpholines/therapeutic use , Pyrazines/therapeutic use , Pyridones/therapeutic use , Pyrrolidines/therapeutic use , Randomized Controlled Trials as Topic , Ritonavir/therapeutic use , SARS-CoV-2 , Sofosbuvir/therapeutic use , Treatment Outcome , Triazines/therapeutic use , Valine/analogs & derivatives , Valine/therapeutic use
7.
Front Immunol ; 12: 660179, 2021.
Article in English | MEDLINE | ID: covidwho-1264332

ABSTRACT

The complex interplay between the gut microbiota, the intestinal barrier, the immune system and the liver is strongly influenced by environmental and genetic factors that can disrupt the homeostasis leading to disease. Among the modulable factors, diet has been identified as a key regulator of microbiota composition in patients with metabolic syndrome and related diseases, including the metabolic dysfunction-associated fatty liver disease (MAFLD). The altered microbiota disrupts the intestinal barrier at different levels inducing functional and structural changes at the mucus lining, the intercellular junctions on the epithelial layer, or at the recently characterized vascular barrier. Barrier disruption leads to an increased gut permeability to bacteria and derived products which challenge the immune system and promote inflammation. All these alterations contribute to the pathogenesis of MAFLD, and thus, therapeutic approaches targeting the gut-liver-axis are increasingly being explored. In addition, the specific changes induced in the intestinal flora may allow to characterize distinctive microbial signatures for non-invasive diagnosis, severity stratification and disease monitoring.


Subject(s)
Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Liver/immunology , Metabolic Syndrome/immunology , Non-alcoholic Fatty Liver Disease/immunology , Animals , CCR5 Receptor Antagonists/therapeutic use , Dysbiosis/immunology , Dysbiosis/microbiology , Humans , Imidazoles/therapeutic use , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Liver/metabolism , Liver/pathology , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Sulfoxides/therapeutic use
8.
Postgrad Med J ; 98(1161): 509-514, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1262407

ABSTRACT

PURPOSE: This systematic review and meta-analysis aimed to evaluate the effect of sofosbuvir/daclatasvir (SOF/DCV) on mortality, the need for intensive care unit (ICU) admission or invasive mechanical ventilation (IMV) and clinical recovery in patients with COVID-19. METHODS: We performed a systematic literature search through the PubMed, Scopus and Embase from the inception of databases until 6 April 2021. The intervention group was SOF/DCV, and the control group was standard of care. The primary outcome was mortality, defined as clinically validated death. The secondary outcomes were (1) the need for ICU admission or IMV and (2) clinical recovery. The pooled effect estimates were reported as risk ratios (RRs). RESULTS: There were four studies with a total of 231 patients in this meta-analysis. Three studies were randomised controlled trial, and one study was non-randomised. SOF/DCV was associated with lower mortality (RR: 0.31 (0.12, 0.78); p=0.013; I2: 0%) and reduced need for ICU admission or IMV (RR: 0.35 (0.18, 0.69); p=0.002; I2: 0%). Clinical recovery was achieved more frequently in the SOF/DCV (RR: 1.20 (1.04, 1.37); p=0.011; I2: 21.1%). There was a moderate certainty of evidence for mortality and need for ICU/IMV outcome, and a low certainty of evidence for clinical recovery. The absolute risk reductions were 140 fewer per 1000 for mortality and 186 fewer per 1000 for the need for ICU/IMV. The increase in clinical recovery was 146 more per 1000. CONCLUSION: SOF/DCV may reduce mortality rate and need for ICU/IMV in patients with COVID-19 while increasing the chance for clinical recovery. PROTOCOL REGISTRATION: PROSPERO: CRD42021247510.


Subject(s)
COVID-19 , Sofosbuvir , Humans , Sofosbuvir/therapeutic use , GRADE Approach , Imidazoles/therapeutic use
9.
Protein Cell ; 12(11): 877-888, 2021 11.
Article in English | MEDLINE | ID: covidwho-1188202

ABSTRACT

A new coronavirus (SARS-CoV-2) has been identified as the etiologic agent for the COVID-19 outbreak. Currently, effective treatment options remain very limited for this disease; therefore, there is an urgent need to identify new anti-COVID-19 agents. In this study, we screened over 6,000 compounds that included approved drugs, drug candidates in clinical trials, and pharmacologically active compounds to identify leads that target the SARS-CoV-2 papain-like protease (PLpro). Together with main protease (Mpro), PLpro is responsible for processing the viral replicase polyprotein into functional units. Therefore, it is an attractive target for antiviral drug development. Here we discovered four compounds, YM155, cryptotanshinone, tanshinone I and GRL0617 that inhibit SARS-CoV-2 PLpro with IC50 values ranging from 1.39 to 5.63 µmol/L. These compounds also exhibit strong antiviral activities in cell-based assays. YM155, an anticancer drug candidate in clinical trials, has the most potent antiviral activity with an EC50 value of 170 nmol/L. In addition, we have determined the crystal structures of this enzyme and its complex with YM155, revealing a unique binding mode. YM155 simultaneously targets three "hot" spots on PLpro, including the substrate-binding pocket, the interferon stimulating gene product 15 (ISG15) binding site and zinc finger motif. Our results demonstrate the efficacy of this screening and repurposing strategy, which has led to the discovery of new drug leads with clinical potential for COVID-19 treatments.


Subject(s)
Coronavirus Papain-Like Proteases/chemistry , High-Throughput Screening Assays/methods , Protease Inhibitors/chemistry , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/virology , Coronavirus Papain-Like Proteases/genetics , Coronavirus Papain-Like Proteases/metabolism , Crystallography, X-Ray , Drug Evaluation, Preclinical , Drug Repositioning , Humans , Imidazoles/chemistry , Imidazoles/metabolism , Imidazoles/therapeutic use , Inhibitory Concentration 50 , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Naphthoquinones/chemistry , Naphthoquinones/metabolism , Naphthoquinones/therapeutic use , Protease Inhibitors/metabolism , Protease Inhibitors/therapeutic use , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification , COVID-19 Drug Treatment
10.
Angew Chem Int Ed Engl ; 60(17): 9467-9473, 2021 04 19.
Article in English | MEDLINE | ID: covidwho-1037522

ABSTRACT

The search for vaccines that protect from severe morbidity and mortality because of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19) is a race against the clock and the virus. Here we describe an amphiphilic imidazoquinoline (IMDQ-PEG-CHOL) TLR7/8 adjuvant, consisting of an imidazoquinoline conjugated to the chain end of a cholesterol-poly(ethylene glycol) macromolecular amphiphile. It is water-soluble and exhibits massive translocation to lymph nodes upon local administration through binding to albumin, affording localized innate immune activation and reduction in systemic inflammation. The adjuvanticity of IMDQ-PEG-CHOL was validated in a licensed vaccine setting (quadrivalent influenza vaccine) and an experimental trimeric recombinant SARS-CoV-2 spike protein vaccine, showing robust IgG2a and IgG1 antibody titers in mice that could neutralize viral infection in vitro and in vivo in a mouse model.


Subject(s)
Adjuvants, Immunologic/therapeutic use , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Imidazoles/therapeutic use , Immunity, Innate/drug effects , Quinolines/therapeutic use , Animals , COVID-19 Vaccines/immunology , Cholesterol/analogs & derivatives , Cholesterol/immunology , Cholesterol/therapeutic use , Female , Humans , Imidazoles/immunology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza Vaccines/immunology , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Membrane Glycoproteins/agonists , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Polyethylene Glycols/therapeutic use , Quinolines/immunology , Recombinant Proteins/immunology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/immunology , Surface-Active Agents/therapeutic use , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists
11.
Theranostics ; 11(3): 1207-1231, 2021.
Article in English | MEDLINE | ID: covidwho-966958

ABSTRACT

Rationale: Coronavirus disease 2019 (COVID-19) has spread worldwide and poses a threat to humanity. However, no specific therapy has been established for this disease yet. We conducted a systematic review to highlight therapeutic agents that might be effective in treating COVID-19. Methods: We searched Medline, Medrxiv.org, and reference lists of relevant publications to identify articles of in vitro, in vivo, and clinical studies on treatments for severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and COVID-19 published in English until the last update on October 11, 2020. Results: We included 36 studies on SARS, 30 studies on MERS, and 10 meta-analyses on SARS and MERS in this study. Through 12,200 title and 830 full-text screenings for COVID-19, eight in vitro studies, 46 randomized controlled trials (RCTs) on 6,886 patients, and 29 meta-analyses were obtained and investigated. There was no therapeutic agent that consistently resulted in positive outcomes across SARS, MERS, and COVID-19. Remdesivir showed a therapeutic effect for COVID-19 in two RCTs involving the largest number of total participants (n = 1,461). Other therapies that showed an effect in at least two RCTs for COVID-19 were sofosbuvir/daclatasvir (n = 114), colchicine (n = 140), IFN-ß1b (n = 193), and convalescent plasma therapy (n = 126). Conclusions: This review provides information to help establish treatment and research directions for COVID-19 based on currently available evidence. Further RCTs are required.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/therapy , Coronavirus Infections/therapy , Severe Acute Respiratory Syndrome/therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Animals , COVID-19/mortality , Carbamates/therapeutic use , Coronavirus Infections/mortality , Disease Models, Animal , Drug Combinations , Drug Evaluation, Preclinical , Drug Therapy, Combination/methods , Humans , Imidazoles/therapeutic use , Immunization, Passive/methods , Pyrrolidines/therapeutic use , Randomized Controlled Trials as Topic , Severe Acute Respiratory Syndrome/mortality , Sofosbuvir/therapeutic use , Treatment Outcome , Valine/analogs & derivatives , Valine/therapeutic use , COVID-19 Serotherapy
12.
J Antimicrob Chemother ; 76(2): 286-291, 2021 01 19.
Article in English | MEDLINE | ID: covidwho-873013

ABSTRACT

BACKGROUND: The combination of sofosbuvir and daclatasvir has a well-established safety profile and improves clinical outcomes in HCV patients. In silico and in vitro studies suggest that sofosbuvir/daclatasvir may show antiviral activity against SARS-CoV-2. METHODS: Three clinical trials comparing sofosbuvir/daclatasvir-based regimens with a comparator in hospitalized COVID-19 patients were combined in a meta-analysis. The primary outcomes measured were clinical recovery within 14 days of randomization, time to clinical recovery and all-cause mortality. A two-step approach was used to analyse individual-level patient data. The individual trial statistics were pooled using the random-effects inverse-variance model. RESULTS: Our search identified eight studies of which three met the inclusion criteria (n = 176 patients); two studies were randomized and one was non-randomized. Baseline characteristics were similar across treatment arms. Clinical recovery within 14 days of randomization was higher in the sofosbuvir/daclatasvir arms compared with control arms [risk ratio = 1.34 (95% CI = 1.05-1.71), P = 0.020]. Sofosbuvir/daclatasvir improves time to clinical recovery [HR = 2.04 (95% CI = 1.25-3.32), P = 0.004]. The pooled risk of all-cause mortality was significantly lower in the sofosbuvir/daclatasvir arms compared with control arms [risk ratio = 0.31 (95% CI = 0.12-0.78), P = 0.013]. CONCLUSIONS: Available evidence suggests that sofosbuvir/daclatasvir improves survival and clinical recovery in patients with moderate to severe COVID-19. However, the sample size for analysis was relatively small, one of the trials was not randomized and the designs were not standardized. These results need to be confirmed in larger randomized controlled trials.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Carbamates/therapeutic use , Imidazoles/therapeutic use , Pyrrolidines/therapeutic use , Sofosbuvir/therapeutic use , Valine/analogs & derivatives , Adult , Aged , Antiviral Agents/administration & dosage , Carbamates/administration & dosage , Drug Therapy, Combination , Female , Humans , Imidazoles/administration & dosage , Iran , Male , Middle Aged , Pyrrolidines/administration & dosage , Randomized Controlled Trials as Topic , SARS-CoV-2 , Severity of Illness Index , Sofosbuvir/administration & dosage , Treatment Outcome , Valine/administration & dosage , Valine/therapeutic use
13.
Mol Inform ; 40(1): e2000113, 2021 01.
Article in English | MEDLINE | ID: covidwho-680516

ABSTRACT

The main protease (Mpro) of the SARS-CoV-2 has been proposed as one of the major drug targets for COVID-19. We have identified the experimental data on the inhibitory activity of compounds tested against the closely related (96 % sequence identity, 100 % active site conservation) Mpro of SARS-CoV. We developed QSAR models of these inhibitors and employed these models for virtual screening of all drugs in the DrugBank database. Similarity searching and molecular docking were explored in parallel, but docking failed to correctly discriminate between experimentally active and inactive compounds, so it was not relied upon for prospective virtual screening. Forty-two compounds were identified by our models as consensus computational hits. Subsequent to our computational studies, NCATS reported the results of experimental screening of their drug collection in SARS-CoV-2 cytopathic effect assay (https://opendata.ncats.nih.gov/covid19/). Coincidentally, NCATS tested 11 of our 42 hits, and three of them, cenicriviroc (AC50 of 8.9 µM), proglumetacin (tested twice independently, with AC50 of 8.9 µM and 12.5 µM), and sufugolix (AC50 12.6 µM), were shown to be active. These observations support the value of our modeling approaches and models for guiding the experimental investigations of putative anti-COVID-19 drug candidates. All data and models used in this study are publicly available via Supplementary Materials, GitHub (https://github.com/alvesvm/sars-cov-mpro), and Chembench web portal (https://chembench.mml.unc.edu/).


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Coronavirus 3C Proteases , Drug Repositioning , Imidazoles/chemistry , Indoleacetic Acids/chemistry , Molecular Docking Simulation , Protease Inhibitors , SARS-CoV-2/enzymology , Sulfoxides/chemistry , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/enzymology , Catalytic Domain , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Humans , Imidazoles/therapeutic use , Indoleacetic Acids/therapeutic use , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , Quantitative Structure-Activity Relationship , Sulfoxides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL